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Numerical Methods for the Simulation of Complex Multi-Body Flows

with Applications for the Integrated Space Shuttle Vehicle

William M. Chan

Introduction

This project forms part of the long term computational effort to simulate the time

dependent flow over the integrated Space Shuttle vehicle (orbiter, solid rocket boosters

(SRBs), external tank (ET) and attach hardware) during its ascent mode for various

nominal and abort flight conditions. Due to the limitations of experimental data such as

wind tunnel wall effects and the difficulty of safely obtaining valid flight data, numerical

simulations are undertaken to supplement the existing data base. This data can then be

used to predict the aerodynamic behavior over a wide range of flight conditions. Existing

computational results [1] show relatively good overall comparison with experiments but

further refinement is required to reduce numerical errors and to obtain finer agreements

over a larger parameter space.

One of the important goals of this project is to obtain better comparisons between

numerical simulations and experiments. In the simulations performed so far, the geometry

has been simplified in various ways to reduce the complexity so that useful results can

be obtained in a reasonable time frame due to limitations in computer resources. In this

project, the finer details of the major components of the Shuttle will be better modelled by

including more complexity in the geometry definition. Smaller components not included

in early Shuttle simulations will now be modelled and gridded.

A major obstacle in the computational effort is the difficulty in generating satisfac-

tory three-dimensional grids to represent the complex geometries of the integrated Space

Shuttle vehicle. The body surface grid is usually supplied from algebraic or elliptic grid

generation packages. The 3D volume grid is most efficiently obtained from a hyperbolic

grid generation code. In the past two years, the hyperbolic grid generation code has been

modified significantly to achieve a more modular structure. The algorithm has also been

improved to provide robustness for a wide range of different geometries.

An important tool for numerical simulation is the flow solver. The F3D code uses an

implicit approximately factored scheme for the 3D thin-layer compressible Navier Stokes

equations with the Baldwin-Lomax algebraic eddy viscosity model. Each time step requires

the inversion of two implicit block factors which can be quite an expensive procedure when

only a steady state solution is required. In order to speed up the solution process, the

diagonal algorithm and dissipation model in ARC3D have been implemented into the new

flow solver OVERFLOW [2].





Algorithm and Code Development

Three-Dimensional Hyperbolic Grid Generation - HYPGEN

The purpose of the HYPGEN code is to generate a 3D volume grid over a user-supplied

single-block surface grid. This is accomplished by solving the 3D hyperbolic grid generation

equations (two orthogonality relations and one cell volume constraint). A 2D grid can also

be generated by specifying appropriate boundary conditions.

The code is evolved from an old version (HYG3D) by Steger and Rizk [3]. In previous

versions of the code, special care and parameter adjustments were frequently necessary

in order to cope with a new geometry that is significantly different from ones treated

before. The current version of the code is much more modular and many new techniques

have been implemented to improve the robustness of the code (see Appendix A for details

of the enhanced algorithms). Since a marching scheme is used in the grid generation

process, the hyperbolic scheme in the code is about one to two orders of magnitude faster

than typical elliptic methods (a volume grid with a hundred thousand grid points can be

generated by HYPGEN in about one CPU second on the CRAY-YMP).

Constant user support has been provided for the code since its first release (Version

1.0) in January 1991. A user guide and a set of examples axe provided with the release.

Over the last year or so, the code has been used by various groups at Ames (e.g., Pow-

ered Lift, High Alpha, Incompressible Navier-Stokes groups in RFA) and it has also been

distributed to several groups in industry and university (e.g., Boeing, Rockwell Interna-

tional, Sandia National Labs, Gulf Stream, University of California at Davis, Penn State

University).

Hyperbolic Surface Grid Generation - SURGRD

Various tools have been developed for surface grid generation and communication used

in the Chimera overset grid method. The hyperbolic surface grid generator (SURGRD) was

modified extensively and various new capabilities have been added to the code including a

set of general floating boundary conditions which allows good control of side boundaries.

This code has mainly been used in the generation of collar grids for intersecting geometric

components (see Appendix B). A grid projection tool (PROGRD) was also developed to

perform appropriate projections between overlapped surface grids such that proper inter-

grid communication is maintained in the overlapped regions.

Flow Solver - OVERFLOW

The diagonal algorithm of Pulliam and Chaussee [4] used in the Ames code ARC3D

was implemented into the Chimera overlapped grid Navier Stokes flow solver OVER-

FLOW [2]. The artificial dissipation model in ARC3D was also incorporated. Some

optimizations were performed to improve the efficiency of the code. The resulting scheme

achieved a three-fold increase in speed over the old F3D algorithm.





Other major code development tasks for OVERFLOW included the implementation
of a forces and moments subroutine, an investigation on the symmetry error causedby
the diagonal algorithm and the coding for the fortified Navier Stokes scheme [5]. An
unofficial copy of the code with the fortified Navier Stokesschemehas been used by the
RFA Rotorcraft CFD group to simulate an actuator disk. A boundary layer option for the
schemewasalsoimplemented. It wasexpectedto increasethe convergenceof the codebut
initial studies did not showmuch improvement.

Applications

The diagonal scheme option in the flow solver OVERFLOW was tested on a Space

Shuttle vehicle launch configuration (9 grids consisting of External Tank, Solid Rocket

Boosters, Orbiter and attach hardware). The flow simulation was performed at a Mach

number of 1.25, angle of attack of -5.1 degrees and a Reynolds number based on wind

tunnel conditions. Very good comparisons with wind tunnel data were obtained. After

convergence was attained, the simulation was continued further in time accurate mode to

capture the behavior through one cycle of oscillation in the lift coefficient. Other flow

simulations using the diagonal scheme in OVERFLOW are described in Appendix C.

As an application for the hyperbolic surface grid generator SURGRD, collar grids for

intersecting geometric components were used as test cases. In particular, the collar grid for

the orbiter-vertical tail junction was generated using some of the new features in boundary

conditions implemented in SURGRD (see Appendix B).

The geometry definition and surface grid generation for the Space Shuttle Orbiter has

been made a much less formidable task by the availability of the CAD/grid geneneration

software package ICEM. More complex geometric features can now be incorporated into

the definition with the CAD capability. Surface grids can then be generated over the new

improved geometry.

The surface grids for the back region of the Orbiter were generated using the ICEM

software. First, a blocking strategy was drafted and then grids were generated. Several

iterations of modifying the blocking strategy were made to eliminate certain deficiencies in

the resulting grids. The volume grids were then generated using HYPGEN. The resulting

grid system includes 12 new grids for the back region: body flap, body flap side wall,

right main engine, symmetry grid for right main engine, out-board side grid for right main

engine, top main engine, OMS extension and its collar grid, RCS jet block and its collar

grid, and exit caps grids for the two engine grids. The inter-grid communication for the

Chimera overlapped grid scheme was then arranged for an Orbiter alone case in an 18-grid

system; consisting of the 12 new grids and 6 other grids for the rest of the Orbiter flow

field. The PEGASUS code was run in increasingly complex configurations until all 18 grids
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were communicating with eachother. A flow simulation for an Orbiter alonecasewith the
new grid system is in progress.

Concluding Remarks

The hyperbolic grid generationalgorithm wasenhancedto increaseits robustnessand
efficiency. A resulting code HYPGEN wasdevelopedand has beendistributed to various
CFD groups. Future plans for the code include more automatic selectionof certain grid
quality parameters such that lessuser knowledgeand input is required. Grid tools were
alsoenhancedand developedfor collar grid generation (SURGRD) and communication for
overlappedsurfacegrids (PROGRD).

The diagonal schemeand dissipation modelof ARC3D hasbeenimplemented into the
overset-grid flow solver OVERFLOW. Due to its speed,the diagonal schemeoption has
been used for all recent steady-state calculations of the integrated SpaceShuttle vehicle
flow field, both within the Multiple-Body Aerodynamics group in RFA and the Shuttle
group at NASA Johnson.

Improvementsover the existing geometric complexity usedin flow simulations for the
Orbiter hasstarted by the generationof 12new surfacegrids for the back region. Future
plans will include better modelling of the entire Orbiter geometry using the ICEM CAD
and grid generation package.
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Abstract

A hyperbolic grid generation scheme formulated

from grid orthogonality and cell volume specification

is generalized such that high quality three-dimensional

grids can be obtained for a wide variety of geome-
tries. The speed of the scheme is one to two orders of

magnitude faster than typical elliptic grid generation
methods. The robustness of the scheme is significantly

enhanced by several new techniques. By using a spa-

tially variable smoothing coefficient, orthogonality and

smoothness of the grid are maintained around complex

concave and convex surface topologies. A metric cor-

rect.ion procedure is employed to guarantee that the

grid marches out of a corner by bisecting the angles

subtended by the neighboring points. Extra robust-

ness at severe convex corners is achieved by special

local treatments. Different extrapolation methods are

used to provide smoothness at floating edges and axis

regions. The versatility of the new hyperbolic grid gen-
eration scheme is demonstrated by three-dimensional

grids generated for external components of the inte-

grated Space Shuttle vehicle and the SOFIA telescope.

1. Introduction

One of the most popular approaches for gener-
ating structured grids is by the solution of a set par-

tim differential equations. The governing equations

can be classified into three types: elliptic, parabolic

and hyperbolic. The most widely used grid genera-

tion methods require the solution of a set of elliptic

equations1-4; however, parabolic and hyperbolic equa-
tions have also been successfully employed 5-10 and are

advantageous for certain applications.

Since the solution of the elliptic equations sat-

isfies the maximum principle, the grids generated are

typically smooth. Moreover, the formulation of the el-
liptic equations allow exact specifications of all bound-

ary point locations, l[owever, grid orthogonality can-
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not be maintained with conventional elliptic grid gen-

eration methods and boundary surface retinement can

be difficult to impose. The user input required to set
up boundary distributions can also be time consun_-

ing. With hyperbolic grid generation, nearly orthogo-

nal grids with excellent clustering control can be pro-
duced with one to two orders of magnitude savings

in computer time over elliptic grid generation. Itow-

ever, hyperbolic grid generation methods are less ro-

bust, tend to propagate input discontinuities, and the

outer boundary location cannot be precisely sp,_cilicd.

llence, they are usually restricted to the generation

of grids for external flows or for chimera overset-grid
schemes 13 where the exact location of the outer bound-

ary is not constrained. This later application has be-

come more important, however, and this coupled with

the efficiency and often superior grid quality obtaine.d
with hyperbolic grid generation schemes motivates in-

vestigation into improving their robustness.

In the last few years, the hyperbolic grid gen-

eration algorithm described in Ref. 7 has evolved to

include some significant enhancements. A wider range
of boundary conditions can now be treated and some

feedback features have been added so that dissipative

terms (which give the equations a somewhat parabolic

nature and smoothness) are now automatically ad-
justed depending on grid evolution or character. The

resulting hyperbolic grid generation scheme is signifi-

cantly more robust, produces higher quality grids, and

can treat a wider variety of topologies.

The governing equations for three-dimensional
hyperbolic grid generation are l)resented in §2. The

numerical marching scheme employed to solve these

equations is described in §3. Three factors important

in controlling grid quality, the boundary conditions,

cell volume specification and added smoothing are dis-

cussed in §4, 5 and 6 respectively. Discontinuities due
to body shape or initial grid point distribution can

present special problems to a hyperbolic solver that
dissipation alone cannot satisfactorily cure. Corner

points are especially difficult and special remedies are

described in §7 and 8. A metric correction procedure
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which is essential in providing smooth grids at corners

with uneven grid spacings is described in §7. Extra
robustness at sharp convex corners can be achieved

by switching from solving the hyperbolic equations to

some other equations by marching at the convex cor-
ner points. These schemes are described in §8. In §9,

examples from grids produced with the new hyperbolic

grid generator for various external components of the

Space Shuttle launch vehicle and the SOFIA telescope

are presented. Finally, conclusions are given in §10.

2. Governing Equations

Generalized coordinates _(x, y, z), rl(x, y, z),

_(x, y, z) are sought where the body surface is chosen

to coincide with _(x, y, z) = 0 and the surface distri-

butions of _ = const and 7/= const are user-specified.

With external aerodynamic applications in mind, the

location of the outer boundary ((x, y, z) = (max is not

specified. The governing equations are derived from

orthogonality relations between _ and _, between r/and
(, and a cell volume or finite Jacobian J constraint7:

z_xi + yey_ + zez( = 0, (2.1a)

x,x_ + Y,TY; + z, zi = O, (2.1b)

x(y,_z_ + xiy_z,_ + x,yezi -- x_yiz, _ -- x,yiz( - xiy,_z _

= AV, (2.1c)

or, with f" defined as (x, y, Z)T

_'¢._'¢ =o, (2.2a)

(2.2b)

(2.2c)

_'0._'_ =0,

O(x, y, z)
o(_,,7,_) = J-_ = AV.

Equations (2.1) comprise a system of nonlinear

partial differential equations in which x, y, and z are
specified as initial data at _ = 0. Local linearization

of Eqs. (2.1) about the state 0 results in the system of

grid generation equations

A0(_'- g0)¢ + B0(Y- _*0), + C0(e- f'0)¢ = f (2.3)

with

A= 0 0 0 ,

(u,z¢ - ucz,) (x_z. - x,_¢) (x,y_ - _y,)
(2.4a)

(0 0 0)B = x_ y( z_ ,

(2.4b)

C -" x, Yo % ,

(y¢zo -yoz_) (x,_z( - x_z,) (x¢y,_ - x,_y_)

(2.4c)
and

- _ • _¢)0 / 0
f= ,or o¢x I = (2.4d)- _ • _0 / 0 .

AV - AVo / AV - AVo

Equation (2.3) can be rewritten as

AoZ_ + Bo,",,+ Co_'¢= _" (2.5)

with g= (0,0, AV + 2AV0) T. Now Co _ exists unless

(AV0) _ 0, so Eq. (2.5) can be rewritten as

Co_AoY_ + Co_Bo_', + _ = Co_ ". (2.6)

Although the algebraic verification is not trivial, C o _A0

and ComBo are symmetric matrices 7. This implies

that the linearized system Eq. (2.6) is hyperbolic and

can be marched with _" serving as the "time-like" di-
rection.

3. NumericalMarchlng Scheme

The system of grid generat'ion equations given by

Eq. (2.5) are solved with a non-iterative implicit finite

difference scheme. An unconditionally stable implicit

scheme has the advantage that the marching step size

in _ can be arbitrarily selected based only on consider-

ations of accurately generating the grid. Linearization

is performed about the previous marching step in _.

Let A_ = At/ = A_ = 1 such that ( = j- 1,

r/= k- 1, and _ = I- 1. Central spatial differencing of

Eq. (2.5) in _ and q with two-point backward implicit

differencing in _ leads to

A_6_(_+i - _) + Bt6,_(5+_ - _) + _'I_-Y(7_+ 1 : g/+l

(3.1)
where

and

6_G _ ,._+_- ___ _,,_. _ e_+_- ¢___
2 ' 2

Throughout, only those indices that change are indi-

cated, thus r_+_ =0 rj,_._+_and rj+_ :=_ rj+_,_,_, etc.
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Multiplying through by Cj-1 and approximately

factoring gives

(I + C[-1Bt6o)(I + c[-iAt6_)(Yt+l - gt) = Ct- 1/_t+1
(3.2)

where I is the identity matrix. The problem is now

reduced to solving a sequence of block tridiagonal sys-
tems.

Since all _- and q-derivatives are approximated

by central differencing, numerical dissipation terms are
added in these directions. For simplicity, only second

differences are used which are explicitly and implicitly

included in the basic algorithm as

[I + C_-1Bt6,7 - ei,l( AV).][I + C[-IAt6_ - ¢I_(AV)_]

- = - +
(3.3)

where, for example,

(AV)r/r'*- _k+l -- 2_k "+ _"k-1,

and with ei_ ._ 2e_ and ei¢ _ 2c_,. Additional smooth-
ing and implicitness are put into the algorithm 11 by
differencing V(_'=/6 as 8+1 - Fi = (1 + 0)Ft+a - 0b_,

with 0 > 0. This differencing in _ is incorporated into

Eq. (3.3) as

[I + (1 + O.)C?I B_6. - _.,(AV).]

x [I + (1 + Oe)CT1AI6_ - e_¢(AV)_]

X (_/+1 -- _/) : c/lffl+l - [_e_c(AV)_ + (erl(AV)rl] _/

(3.4)

The values of 0_ and 07 are kept at zero unless the body
contains concave profiles in _ or q. Suppose the body

has a concave profile in the _-direction, then values

of 0_ of 1 to 4 are effective in preventing grid lines
from crossing. The same concept also applies in the q

direction.

The coefficient matrices A1, Bt and Cz contain

derivatives in _, 7) and _. The derivatives in _ and q

are obtained by central differencing while the deriva-

tives in _ are obtained from Eqs. (2.1) as a linear com-

bination of _- and q-derivatives as follows

Y¢ - Det(C) x.z_ - x_z, = C-1_
z¢ x_ Y,1 - x, y_

(3.5)

with

Det ( C) = (y_ z_ -y_ z_ )2 +( x,_ z_-x_ z,7)2 +(x_ Y,1-x,7 Y_)2"

A discussion on a more appropriate way to compute

these _-derivatives is given in §7 .

4. Boundary Conditions

Five types of implicit boundary conditions have

been implemented in the grid generation code at the

and q boundaries (except for the axis condition which

is only implemented in _). In the following, coordi-
nate increments A_" = _'t+_ - _ are represented by

(Ax, Ay, Az) T.

(a) Periodicity- All derivatives at the end points in
the periodic direction are evaluated by 'wrapping

around'. A periodic block-tridiagonal solver is
used for the inversion of the appropriate factor

in the left-hand side of Eq. (3.4).

(b) Constant Cartesian plane - If a _ or q bound-

ary is restricted to an x =const, y =const or
z =const plane, then that value is enforced and
the other variables are 'floated'. For example, for

an z =const plane at the j = 1 boundary, x is

held constant and y and z are floated using

AV = AV (4.1)
Az j=a Az j=_

(e) Symmetry plane- Conventional reflection planes

are used to impose symmetry about any x = 0,

y = 0 or z = 0 plane and values are updated

implicitly. For example, to update a reflected

plane at j = 1 for a symmetry condition about
x = 0 corresponding to j = 2, x reflects odd and

y and z reflect even as (in delta form):

Ay = Ay (4.2)

nZ j=l AZ j=3 "

Since the j = 2 plane in this example may deviate

very slightly from x = 0 away from the body
surface due to round-off error, post-processing is
done to set the x coordinate exactly to zero at

j = 2 at each incremental level in l. Otherwise

slight asymmetry may be experienced in a flow
solver.

(d) Floating edge - Much as in the case of a con-
stant Cartesian plane, an entire ( or q boundary

can be floated using the simple hyperbolic equa-

tion _¢ = 0 or F,¢ : 0 to update a boundary

plane. This is essentially a zeroth-order extrap-
olation of AF from the adjacent interior value,

and it often works well. Occasionally, however,

the floating boundary plane itself may tend to
'roll in' or 'kink' while its neighboring planes in

the interior remain smooth. Since the interior

points are fine, this problem has been remedied

by the addition of a fictitious line of points on
the body surface next to the floating edge by lin-

ear extrapolation from the interior. The dimen-

sion of the surface grid in a particular direction is
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temporarily increased by one or two depending
if one or two floating edges are present in that

direction. The 3D grid is then generated over

the extended surface grid. After the 3D grid is

generated, the fictitious plane or planes of points
is removed. The addition and removal of these

fictitious points are carried out internal to the
code and is not a concern for the user.

When using the chimera overset-grid scheme, it
is particularly desirable to have the floating edges

splay outwards, i.e., in the direction away from
tile interior of the grid; thus providing better

overlap between neighboring grids. Although a

free floating edge using zeroth-order extrapola-

tion may bend inwards or outwards, it is found

that using a mixed zeroth and first-order extrap-

olation scheme tends to bend the edge outwards.

For example, at the j = 1 boundary, we have

Y J=_ Az/i=2

(4.3)

where 0 _< eex _< 1. Zeroth-order and first-order

extrapolation schemes are recovered at the two

limits of eex respectively. Typically, a value of
_ex _ 0.05 - 0.2 is used. An example using the

The treatment of the axis requires special atten-

tion in order to produce smooth results. Two
methods are described below. 'File first method

requires the user to adjust certain input par;m>

eters and is able to produce smooth results for
all cases encountered so far. The second method

does not require the user to adjust any l)arame-

ters but is only able to produce smoot.}t r.sults
for a smaller number of cases.

The first method involves using a mixed zeroth

and first-order extrapolation and volume scaling.

The axis point is updated implicitly by imposing
that A_'at the axis is extrapolated by' a mixed ze-

roth and first-order scheme similar to that given

by Eq. (4.3). The resulting k .... predicted val-
ues, where k,,,_× is the number of points aroumt

the axis, are averaged to produce a uni(luC value
at the axis. The methods of volume specification

described in ._5 below usually produce volumt!s

that are too large near lhe axis. lIence, the rob

umes in the ring of points around lhe axis are

scaled by a reduction factor ill the range 0.1 to

1.0. Typical values of the extrapolation factor

and volume scaling factor are 0.4 and 0.3 respec-

tively. Figure 2 shows the symmetry plane of
an external tank grid with an axis coming off a

pointed nose and an axis coming off a tlat back.

We see that the axis logic described above is able

to provide smoothness at b'oth the front and the

back regions.

floating edge condition with e¢_ = 0.2 at tile

boundaries of a flat plate is shown in Figure 1.

__'?"-.._.;!:-,.-.-. ;.

Figure 1. Outward-splaying edges of a flat plate.

(e) Axis- When the axis logic is used in the j-direction,
it is assumed that the boundary condition in the

k-direction is either periodic or that of symmetry
or constant planes at both ends. For example,

one may generate a grid for a complete ellipsoid

(periodic in k) or just one half of it (symmetry
or constant planes at end points in k).

Figure 2. Symmetry plane of external tank grid with

a pointed axis in front and a fiat axis at the back.

The second method requires an explicit update

of the axis points. Axis values are first, updated
using a special local coordinate system (_i,/)i)

that bridges across the axis. The grid generation

equations are used on the local coordinates to up-

date x, y and z using an explicit, differencing pro-

cedure and central space differencing thai avoids
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using the center point (a similar approach has
been used for unstructured data in a _ = coast

plane, see Ref. 12). There are krnax such coordi-
nates introduced so that data around the axis can

be sampled, and all values explicitly predicted

from the differenced grid generation equations

are averaged since all axis values of x, y and z
must be the same. These values are then filtered

or smoothed with the interior grid values once

they are updated in (. (Note that the numerical

dissipation coeflficients defined with Eq. (6.2) can

become too large near an axis for this method.

For example, near an _ = coast axis e_n is re-
duced.) A corrector step has not yet been im-

posed and tile currently implemented unstable

one step explicit scheme is only satisfactory for
rapidly expanding axis regions, for example, the

nose of the external tank in Figure 2.

5. Cell Volume Specification

With tile hyperbolic grid generation method, one

of the means of controlling the grid is by specification

of the cell volumes, A_,k,t. Through the cell volumes,
the extent and clustering of the grid can be modified.

Since the cell volume at each point must be given, it is

clear that tile user must devise a simple global method

for speciL'ing volumes.

Two methods of volume specification are described

below. Both of them require a radial point distribution

function sj,k,t which prescribes the arc length between
points in the direction normal to the body surface. In

the most general case, s is a function of j, k and l since

each point on tile body surface may be stretched to a

different outer boundary location (For example, in the

case of a body at a positive angle of attack in hyper-

sonic flow, one may wish to have the outer boundary

of the grid further away on the top surface than on

the lower surface). Typically, the points are stretched

away from tile body exponentially. If grid point spac-

ing control is required at the outer boundary as well

as at the body surface, or if more uniform grid point

spacing is required away from the inner body surface,
hyperbolic tangent stretching can be used. The ability

to control the grid spacing at each end of the domain

is useful when multiple zones consisting of stretched

points or uniformly-spaced points are desired. Also,

the presence of more points in the far field of a com-
ponent grid helps to improve grid-overlap regions for

the chimera overset-grid scheme 13.

In the first method for specifying cell volumes,

the specified volume at each point is set equal to the

computed surface area element times a user specified

arc length. Specifically,

(5.1)

where Asj,kd = sj,k,z+l - sj,k,_ is the user specified arc
length for marching and AAj,k,t is the surface area el-
ement. In this kind of volume control specification, if

an initial distribution of points is highly clustered in

or _/, then these points tend to remain highly clustered

even far away from the body. In order to obtain a

more uniform far-field distribution, the volumes spec-

ified from Eq. (5.1) are averaged in _" and r/with each

step taken in _. For example, the averaged volume

A_,kd can be computed ms

A_3,k,_ = (1 - v_)AVj,k,s
/2a •

+q-(Al_+_,k,_+Al_ _t,k,_+A Vj,k+_,_+A t j,k_ _,_) (5._)

where this is applied one or more times with each step
in ('. A typical value of u_ that has been employed is
0.16.

The second method of generating mesh cell vol-

umes is to form a grid about a 'similar' but simple

reference body for which tile grid can he generated

analytically, and to use the cell volumes from this ref-

erence grid for the more complex problem. In order

to mesh a wing with a spherical-like grid, for example,
cell volumes can be specified by analytically building

a grid for a simple body with the same surface area.
All obvious choice is a spherical grid that has uniform

angle spacing and a radial distribution prescribed by

sj,kd, hi this special case, the control cell volumes
are analytically known. The grid cell volumes of this

spherical reference grid are then used to specify the

cell volumes of the wing grid. Itowever, the wing will
not have the same kind of surface area distribution as

a sphere with equal angle distribution. So an adjust-
ment is made of the form

(AAj,k)wing t/] (AVjk t)sphere

(5.3)
where u ---* 1 for small I and u --_ 0 for large I. That is,

the volumes are adjusted initially to the local bound-

ary surface increments. But as the solution is marched

outwards, the uniform spherical volumes gradually be-

come specified. When such an approach is used, the
far field portion of the grid tends to be more uniformly

spherical.

6. Smoothing

Since central differencing is used in the numer-

ical scheme, artificial dissipation terms are added to

control oscillations arising from the odd-even uncou-

pling of grid points. An equally important function

of the added dissipation is to control the smoothness

of the resulting grid. The form and magnitude of the
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added dissipation are extremely important in shaping

the grid quality.

The parameters 0_ and 0n on the left-hand side of

the grid generation equations (3.4) can be thought of

as a type of smoothing in the _ marching direction. In

the _ and r/directions, it is adequate for the purpose
of controlling the smoothness of the grid to use just

second-order smoothing.

For simple surface topologies, such as an ellip-

soid which has a convex profile in all directions, a

constant dissipation coefficient is sufficient to provide

good grid quality. However, body surfaces encountered
in aerodynamic applications are frequently much more

complex with combinations of sharp convex and con-
cave corners. Hence, the dissipation, which tends to

reduce grid curvature and orthogonality, must be ap-

plied more selectively. The reduction of grid curvature

can be advantageous in concave regions and detrimen-

tal in convex regions. In order to prevent grid lines

from converging and crossing, the dissipation has to
be relatively high in concave regions (e.g., in the re-

gion between the orbiter fuselage and the wing root

in Figure 7). Conversely, the dissipation must be kept
small near the body surface and sharp convex corners

(such as the convex corners of the IEA box in Figure
6), otherwise the resulting grid spacing in the _ di-
rection would become too reduced or even negative.

A spatially uniform dissipation coefficient is unable to

satisfy all of the above requirements. Spatially-varying

dissipation coefficients have been used previously, but

they have only accounted for variations of mesh size,

specifically, C-XA and C -IB variations. A spatially-

varying form of the dissipation coefficient which has

worked very well for many cases is described below.

The explicit second-order dissipation De added

to the right hand side of the equations is given by

D_ = -[e_¢(AV)_ + eeo(AV),]6, (6.1)

with

= = ,eR,,N,,, (6.2)

where _c is a user-supplied constant of O(1), N_ and

N, are approximations to the matrix norms IIC-IA]]
and IIC-'BII respectively, given by

+ y_ + z_ N. = /x_ + y_ + z_= +4'
(6.3)

and Re, R, are the dissipation coefficients given by

=s, R,= s, (6.4)

The dissipation coefficients consist of three functions

which provide different ways to automatically adjust

the local dissipation appropriately depending on the

local grid topology:

(1) A scaling function Ss which varies with normal
distance from the body surface.

(2) A grid point distribution sensor function, dj,k, t
in

or dj,k, a depending on the direction, which senses
mesh convergence based on the distances between

neighboring grid points.
depending(3) A grid angle function, a_,k, 1 or aj,k, l

on the direction, which senses mesh convergence

based on the angles between neighboring grid

points.
The form of the scaling function St is given by

SI =

__ ltrans + 1 < l < lmax ,

(6.5)
where /max is the number of points in the l direction

and ltran, is restricted to the range [3,1] x lm_x. With

4,k3 and defined by Eqs. (6.8a,b), ltrans is set. toOY, k,1

l when one or both of the following is true:

maxd_ k t - maxd_ k,t-1 < O, (6.6a)
j,k _, , j,k J,

maxd_kt-maxd?_l I <0. (6.6b)
j,k _, , j,k _, ,-

Once ltran, is located; the above tests are not per-

formed for I > It_n_.

The purpose of the scaling function St is to guar-

antee small dissipation, and hence grid orthogonality,

near the body surface. As one moves away from the

body surface, dissipation is increased since grid lines

may begin to converge in concave regions and some loss

of grid curvature in convex regions is no longer a prob-
lem. Away from the body surface, the grid point dis-

tribution sensor function and the grid angle function

alone are sufficient to provide the appropriate amount

of dissipation. Hence, the influence of St is removed

by setting it to a constant at some location lt_,_ away

from the body. It is found that a good criterion for lo-

cating/trans is when the convergence of local grid lines

is slowing down in some sense given by Eqs. (6.6a,b).
For all the cases encountered so far, it is sufficient to

3
test for/trans for I >_ _/max- For some cases, /trans may
be less than /max which reduces loss of orthogonality

near the outer boundary; while for other cases, /trans

may have to be equal to/max when increasing values of

dissipation are needed all the way to the outer bound-

ary to prevent grid lines from converging.

The forms of the grid point distribution sensor
functions d_ , _'_j,k,t dj,k,t are given by

[(a_ _21s, ]J_,k,t = max [t_j,_,_j , 0.1 ,
(6.7)

,t max , ,t) 2/s' O. ,
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where

(6.8a)
. =6,ks- l + - I

(6.8b)

The distribution of grid points in the _ and q

directions are monitored by the functions d_,_, l and

d_,k, z respectively. The quantity d_,k, l is the ratio of
the distances between a grid point and its neighbors

in the _ direction at level (l- 1) to that at level I. This

ratio is high in concave regions and hence more dissi-

pation is provided here. It is of order one or smaller in

flat or convex regions where less dissipation is needed.

Similarly, d_.,k,t represents the corresponding quantity

in the r/direction. The quantities --_,k,t and --d,n,k,tare

constructed from d_. and d_. respectively which
3,k,l j,k,l

are raised to the power 2/St in order to counteract

the small value of St close to the body surface. Also,

dj,k,l_othe values of _J_,k,t and are limited from becom-
ing too low by a limiter of 0.1. Note that a grid point
distribution sensor function based on cell area ratios is

not as effective since the grid lines could be converging
in one direction but not the other and the cell areas

would not decrease very much.

Thegrid angle functions a_ , nj,k,l aj,k,I are more con-
veniently defined in terms of the following unit vectors.

Let the vectors pointing in the plus and minus _ direc-

tions at grid point (j, k, 1) be represented by Yj+ and

_- respectively, where

6 + = 6- = 6-,,ks- 6, s, I6.9)

and let ÷+ and ÷j- be the respective unit vectors for

Yj + and Vj-. Similar expressions are defined for r_+,

r_- and ÷+, _- for vectors and unit vectors pointing

in the plus and minus 7/directions respectively at grid

point (j, k,l). The local unit normal hj,k,l based on

the cross product of the above unit vectors is given by

(÷? - _7) × (_+ - _Z/

_s,_,, = I(÷_ - ÷?) × (÷_+ - ÷_-)1 (6.10)

The cosine of the local half angle ai,k,t in the ( direc-
tion is then given by

cos aj,k,_ = fis,k,t" ÷+ = fij,ks'÷_-.

The grid angle function a_,k, t is then defined as

1/(1 - cos 2 aj,_,l)I1_, k,I = 1

(6.11)

if0<aj,k,l< _ ,

if 2 < OLJ,k, I <-- 7r .

(6.12)

A similar expression is defined for the grid angle func-

tion a? k I in terms of the cosine of the local half angle
]J ,

/3j,k,t m the r/direction.

The smoothing provided by the grid point distri-

bution functions in Eq. (6.7) has to be modified locally

at grid points located at very sharp concave corners.

These corners are detected by computing the half an-

gles e_ and/3 subtended by neighboring grid points in

the _ and r/directions respectively (see Eq. 6.11). At

a severe concave corner point, extra dissipation is re-

quired to prevent crossing of grid lines. The functions

a_ k t and a_ _ _ serve to provide the appropriate local
modifications 'to the dissipation required at these cor-

ner points. For a typical mesh, the values of a_,k, l and

a_,k, l are close to unity at most grid points. Figure 3
shows the grid marching out of a concave angle of 20

degrees. Note that orthogonality is still maintained for

the first point off the surface. Grids for concave angles

down to 5 degrees have been obtained with the above

algorithm.

Figure 3. A concave corner at 20 degrees.

A minor local refinement at l = 2 of the above

dissipation scheme for sharp corners is given in the

Appendix.

7. Metric Correction

In order to provide satisfactory resolution of the

flow around convex or concave corners, it is impor-

tant that the grid spacing on each side of the corner

be approximately equal as the corner is approached.

However, if the surface grid does possess corners with
uneven grid spacings for some reason or another, using

the spatially-varying dissipation described in §6 alone

is not sufficient to provide smoothness at these corners.

The situation can be remedied by a metric correction

procedure.

With the way the (-derivatives are defined in

Eq. (3.5), the direction in which the grid will emanate
from the corner is such that it is perpendicular to the

line joining the two neighbor points of the corner. For

a corner with unequally spaced points, this is obviously
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not a desirable direction to take (see Figure 4a). In or-
der to guide the grid out in a direction that bisects the

angles at a point subtended by' its neighbors in both

the _ and r; directions, the derivatives zC, yC, z¢ at the

point have been modified to x_, _, z_ as follows:

with

- x{z x z; , (7.1)

Det(C') . , , ,z,,2-.x,_, , , 2 , , , , 2= tY_z,7-Y,_ _) ±L .,_._-x_z_) +(x_y,7-x,Ty_) ,

where

= }(I,.+t+ 16-1) 5-IT1'
(7.2_)

and

(ie,+i+le,-i) \ie+l
T'k

I_1
(72b)

(a) (b)

Figure 4. Comparison of treatment of concave cor-
ner with unequal grid spacings. (a) Without metric

correction, (b) with metric correction .

While the (-derivatives should be computed by

Eq. (7.1) near the body surface, the original method

of computing these quantities should be restored away
from the body surface. This can be achieved smoothly

by

(_,_,z_)_ = (:_ _,)(_,y<,z_)_ + _,(_ ,,,_oo yc,z_) ,
(7.3)

where Pl = 22-1 and x_, y_, z_ are obtained by Eq. (3.5).
We see that Eq. (7.1) is of the same form as Eq. (3.5)
except that the _- and rbderivatives are replaced by

the corresponding primed quantities. These modified

_¢- and r/-derivatives are constructed in such a way that

the neighboring points of the corner appear to be of

equal distance from the corner. The result of applying
this procedure to a concave corner is shown in Fig-

ure 4b. Although the examples shown in the figures arc

for concave corners, the above sobs-me works equally
well for convex corners.

8. Treatment of Convex Corners

Two methods are presented here which provide

extra robustness at convex corners. They both involve

switching from solving the hyl)erbolic grid generation

equations (3.4) to some other equations at the convex

corner point. The first method is an implicit averaging

scheme. Instead of solving the hyl)erbolic equations at

a convex corner, the following aw_'raging equalion is
solved.

1

zx,_,k = _ (m + _,,,)_,5,k, (s 1)

where

1

ll_¢m_j,k _- _ (A_j+l,k -t- '_6"-l,k) , (S.'_a)

• 1

t,,,"6,,_ = _ (a:,,_+: + :,:,k-:). (8.2b)

In other words, the marching increment at the corner

is the average of the marching increment of its four

neighboring points. The form of the above scheme can
be made compatible with the hyperbolic grid genera-

tion scheme given by Eq. (3.4) by approximate factor-

ization. The equation to be solved at convex corner

points is then

(I- _/,()(I - _p,_) A_': 0. (8.3)

At I = 2, the switch to solve Eq. (8.3) is performed if

there is either a convex corner in { (cos a.j._ < -0.5,
say) or there is a convex corner in r/(cos/?j,_ < -0..5),

i.e., external angles greater than 240 degrees. The re-

sulting equation would not make sense if only one of
the factors is altered. As the grid marches out in l,

the switch to return to the normal hyperbolic scheme

is performed when the minimumofcos a./,_ and cos _j,_
becomes larger than say -0.2. Although some factor-

ization error is present, this implicit averaging scheme

has worked well for a variety of convex corners includ-

ing some cases where the normal scheme has failed.
One such ease is illustrated by the NACA0012 airfoil

shown in Figures 5a and 5b. The point of this ex-

ample is not to show that an O-grid should be used

for the airfoil but simply to demonstrate the ability of

the scheme to produce high quality grids around sharp
convex corners.
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(a)

(b)

Figure 5. Airfoil with sharp trailing edge and O-grid

topology. (a) Far view, (b) close up view of sharp

trailing edge region .

The implicit averaging scheme described above

possesses two desirable properties. It can be shown

geometrically that if the grid marches out orthogo-

nally at the neighbors of the convex corner, then the
distance marched out at the corner point is always

smaller than the distance marched out at the neigh-

boring points. Moreover, the distance marched out at

the corner point becomes smaller as the convex cor-

ner becomes sharper. This is very useful in helping

to bend the neighboring grid lines towards the sharp

corner as the grid is marched out away from the body

surface (see Figure 5b). The second property is that

tile grid marching out from the corner point will bisect

the angle at the corner provided the neighboring points
march out the same distance and in symmetrical di-

rections to each other. The angle bisecting property

still holds even if the grid spacing is unequal from one
side to the other side of the convex corner.

An alternative but potentially more robust method

than tile implicit averaging scheme above is described

below. The exact location of the grid point in tile next

marching step out from a convex corner is predicted in

advance. The predicted point is located by marching

tile grid a distance of Agj,k,t in the direction given by

the angle-bisecting unit normal where

Agj,k,t = Asj,kj x min(sinctj,k,l, sin/3j,_,l), (8.4)

and Asj,k,t is the user specified arc length in the nor-
mal direction (see §5). The scaling with the sine of

the half angle causes the corner point to march out a

smaller distance than its neighbors, thus helping to

bend the neighboring grid lines towards the corner
in much the same way as described in the last para-

graph. The angle-bisecting unit normal is.simply the

' z_) 7" given byunit vector in the direction of (z_, y;,

Eq. (7.1). Thus, A_'at the convex corner point can
be computed in advance and combined with the grid

generation equations (3.4). From numerical trials with

different geometries, it was found that this procedure
also works well for many types of convex corners.

9. Results and Applications

As the 3D grid is generated by marching out in
the (-direction, a cell volume check by tetrahedral de-

composition and a grid-lines crossing check 15 are per-

formed at each grid cell. If negative volumes or cross-

ings of grid lines are encountered, smoothing parame-

ters can be adjusted appropriately to remove the bad
cells.

The vectorized version of the current hyperbolic

grid generator runs at 142 megaflops on the CRAY-
YMP and requires about 9.7 microseconds of CPU

time per grid point. As an example, generation of the

largest grid in the Space Shuttle launch vehicle grid

system, the orbiter grid for flight Reynolds number

(98 x 77 x 57 = 430122 points ), takes 4.17 seconds of

CPU time. This is about one to two orders of magni-

tude faster than typical elliptic grid generators.
The various external components of the integrated

Space Shuttle vehicle contain a wide variety of differ-

ent geometric features that are found in many other

applications, tlence, these geometric components pro-

vide good tests of robustness for the hyperbolic grid

generation scheme described above. Some examples
are given below.

The following two examples show how the spa-

tially variable dissipation coefficient works at differ-

ent types of corners. The first example shows the grid

around a sequence of sharp convex and concave corners

which appears at the IEA box on the attach ring of the

solid rocket booster (see Figure 6). Low dissipation

values are needed at the body surface and above the

convex corners to maintain orthogonality while high

dissipation values are needed in the concave regions to

provide grid smoothness. Figure 7 shows the smooth-

hess of the grid in a large concave region - the wing

root region at the back of the orbiter.
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Figure 6. Plane through lEA box on the ring of the
solid rocket booster.
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Figure 7. Plane on the back section of the orbiter.

The robustness of the axis logic is tested in the

next example where the geometry is non-circular in
the circumferential direction around the axis and that

the distribution of grid points in this direction is non-

uniform. This type of axis condition is present at the

tip of the vertical tail section of the orbiter (see Fig-

ure 8). The mixed extrapolation scheme with volume
scaling is able to produce a smooth grid for this case.

When the chimera overset-grid method is used on

two grids whose body surfaces intersect each other, the

grid points in the region around the intersection line

which are common to both grids are left with no inter-

polation stencils. In order to remedy this problem, a

collar grid can be introduced which covers the region
around the intersection line 14. The most challenging

example tested by the grid generator so far is the collar

grid which covers the intersection region between the

vertical tail and the orbiter (see Figures 9a,b). The

methods used to generate the collar grid surface are

explained in Ref. 16. The surface of the collar grid is

made up of two parts. The top part lies on the sur-
face of the tail down to the intersection line with the

orbiter. The lower part has two sections. The first
section starts at the intersection line with the tail and

then follows the top surface of tile orbiter. The second
section folds over the back of the orbiter and follows

the backward-facing aft-bulkhead of the orbiter. The

difficult feature of this geometry is the presence of a re-

gion where grid lines are concave in one direction and

convex in the other. Slices of the 3D grid viewed from

the front and back ends of the collar grid are shown in

Figures 10a,b.

The final example is taken from the telescope
grid for the SOFIA vehicle 17. The SOFIA is a modi-

fied Boeing 747 with a telescope mounted inside a cav-

ity on the upper surface of the plane. The telescope is

topologically similar to a hollow bowl with a truncated

cylinder in the middle of the inside of the bowl. Fig-

ure lla shows the surface geometry (shaded) for half

the telescope and slices of the 3D grid. The external
surface of'the telescope consists of both the outside

and inside of the bowl together with the middle cylin-
der. The symmetry plane of the 3D grid is shown in

Figure llb. We see from these figures that although

the surface grid may not possess the sufficient num-

ber of points to resolve the detailed flow structures,

the grid generator is able to produce a smooth grid
over the complex combination of concave and convex

corners using the techniques described in §6, 7 and 8.

The outer boundary of the telescope grid need not be

placed far away from the body surface since the entire

telescope grid is surrounded by a larger cavity grid and

communication between the two grids is achieved via

the chimera overset-grid scheme.

10. Conclusions

A robust three-dimensional hyperbolic grid gen-

eration scheme has been presented which is able to

produce high quality grids for a wide variety of geome-

tries. The improved robustness and the speed advan-

tage of the scheme have made it extremely attractive
for users of chimera flow-solvers. Since the scheme is

fast, the user can readily adjust the input parameters

to fine-tune the grid quality.
The use of a spatially-varying dissipation coeffi-

cient based on distances and angles between neighbor-

ing grid points gives the grid generator the ability to

cope with geometries that are more complex than be-

fore. The grid angle bisecting property is provided by

the metric correction procedure near the body surface.
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Sharp convex corners are automatically detected and

the grid generation equations are altered at these cor-
ners to further enhance smoothness and robustness.
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Appendix

In order to guarantee orthogonality near the body

surface, the dissipation coefficients R e and Rn described
in §6 are made to be zero everywhere at I = 2 through

the scaling function Si. However, near concave and

convex corners, some dissipation has to be restored to
maintain smoothness. This can be accomplished by in-

troducing the blanking function bj,_ which multiplies

R_ and R n at I = 2. The blanking function is zero ev-
erywhere except near concave (aj,k or/3j,k < 7r/3) and

convex (aj,k or flj,_ > 2r/3) corners. For a concave or
convex corner in the _-direction, we set

bj,k = be, bj+l,t = 0.5, bj+2,k = 0.25, (A.1)

while for a concave or convex corner in the q-direction,

we set

bj,k = be, bj,k=l:l = 0.5, bj,k+2 = 0.25, (A.2)

where b, = 1 for a concave corner and bc = 0 for a

convex corner. At convex corners, dissipation at the

neighboring points to the corner is still needed but
the dissipation at the corner point itself should be set

to zero in order to produce the desired effects for the

special schemes described in §8. In constructing bj,k,
it is assumed that successive corners in a coordinate

direction are separated by at least four points. This

is a reasonable assumption if one wishes to provide
sufficient resolution for the flow around such corners.
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(a) (b)

Figure 9. Views of the collar grid surface. (a) Position relative to vertical tail and orbiter, (b) close up
view relative t.o vertical tail and orbiter.
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(a) (b)

Figure 10. Views of sections of the 3D collar grid joining the vertical tail and the orbiter. (a) Front view,
(b) back view.
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Figure lla. Surface geometry and slices of the 3D grid for tile SOFIA telescope.

Figure lib. Symmetry plane of the 3D grid for the SOFIA telescope.
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Abstract

For computational fluid dynamics simulations of

flow about complex geometries, the Chimera overset

grid scheme provides a conceptually simple method for

domain decomposition. Overlapping grids are gener-

ated about individual geometric components, and in-

terpolation is used to communicate boundary informa-

tion between grids. However, for viscous flow compu-
tations about intersecting pieces of geometry (such as

a wing and fuselage), generation of suitable grids and

interpolation stencils in the intersection region is not

straightforward. Problems such as resolution of the

intersection region and appropriate definition of the

geometric surface with respect to both grids must be
addressed.

A method is presented to resolve these issues by

the creation of a "collar grid" which resolves the inter-

section region and effectively connects the related com-

ponent grids. The surface and 3D grid generation pro-

cess for the collar grid is described, with the resultant
effect on interpolations at the grid and hole bound-

aries. The method is applied to a simple wing/body

geometry, and results are compared with experimen-
tal data. Application to the vertical tail of the Space
Shuttle Orbiter is also shown.

1. Introduction

In earlier work [1-3], flow about the Space Shuttle

launch vehicle has been simulated using the Chimera

overset grid approach [4-71 and a thin-layer Navier-

Stokes flow solver, F3D [8-9] (Fig. 1). In this work
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and subsequent studies, the effect of secondary geo-

metrical features such as the Orbiter/External Tank
attach hardware has been found to be vital to calcu-

lation of accurate surface pressures. A combination

of fine grid spacing in the viscous direction normal to

the body surface and the use of trilinear interpolation

by the AEDC PEGASUS software [101 for grid bound-

ary communication prevented the modeling of attach
hardware that actually touched the Orbiter or Exter-

nal Tank (ET). Instead, approximations to the attach
hardware and fuel feed line geometries have been used

which "float" between the two (Fig. 2).

While this approach has allowed the crucial block-

age effect of the attach hardware to be included in the
calculations, requirements on the accuracy of Orbiter

wing load predictions dictates that a more realistic rep-
resentation of the attach hardware and other protuber-

ances be included. Indeed, for the Chimera scheme to
be able to model even so simple a "complex geome-

try" as a wing/body, a routine method for modeling

intersecting geometry components must be developed.
The Chimera scheme allows for the simple merg-

ing of 3D grids by oversetting them onto a main grid.

Surface modeling and grid resolution locations can be
considered independently of other grids within the sys-

tem, and 3D grids can be easily generated, for instance
with hyperbolic grid generators [11-121 . Because grids

are generated somewhat independently, points from

one grid can fall within another body boundary. Such

points must be excluded from the flow computation.

Holes are thus cut in the grids to allow for the body

boundaries of the other grids, creating hole boundaries
in addition to the outer boundaries of the grids. Flow

information is passed back and forth over these bound-

aries using interpolation stencils.
When bodies intersect, with each intersecting body

having its own individual grid, hole cutting can be par-

ticularly difficult. One problem is finding interpolation
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stencils for hole boundaries in the intersection region.

The other difficulty, encountered with high Reynolds

number viscous flow simulation, is that the grid spac-

ing used to resolve the viscous boundary layer is gen-
erally much finer than the accuracy with which the

body surface is represented by the discrete computa-

tional grid. Consequently, a code such as PEGASUS,

which must determine whether points from one grid

are inside or outside of a discretely defined body sur-

face, may make the wrong determination. Because
PEGASUS uses trilinear interpolation, it will gener-

ally be unable to find interpolation stencils for points

very close to a concave surface, determining them to be

inside the body surface. For a convex surface, interpo-

lation stencils for nearby points will reflect a position
farther from the surface than the actual location.

The introduction of a collar grid serves to over-

come these limitations. In this approach, a grid is

added in the region of the geometry intersection. This

grid provides communication between the grids about
the intersecting geometry components, and also re-

solves the intersection region. To avoid problems with

viscous grid spacing, edges of the collar surface grid

are created based upon the geometry surfaces as de-

fined by trilinear interpolation of the component sur-

face grids. Hole boundary points in the component
grids must be moved to the surface as defined by the

collar grid as well. In this way, interpolation stencils

generated by the PEGASUS grid joining software will

correctly reflect the relative locations of the compo-

nent and collar grids. The component and collar grids

can thus be generated independently of each other,
with a minimum of modification for the interpolation

process. The method requires no changes to the Chimera
scheme or to the flow solver.

In following sections, details of this method will

be illustrated using a two-dimensional circle/plane ex-

ample and a three-dimensional cylinder intersecting a

curved surface. Computed flow results will be pre-

sented for a simple wing/body combination and com-
pared with experiment. Finally, addition of the Or-

biter vertical tail is demonstrated for a computation

of flow about the Space Shuttle launch vehicle. Com-

parisons are made with both wind tunnel and flight

measured pressures.

2. Flow Solver

The F3D flow solver [8-9] has been used for these
calculations. F3D is an implicit finite difference code

for solving the thin-layer approximation to the Navier-
Stokes equations. Flux vector splitting is used in the

_-direction, while central differencing is used in 71and

_. The Baldwin-Lomax algebraic turbulence model is

used [13;.

In the Chimera approach, parts of some grids

may be cut out, or eliminated from the computational

domain. Such points might lie within another geome-

try component or simply not resolve the flow as well

as another grid present in the same area. This elimi-

nation is accomplished in the flow solver by using an

array of blanking values ib = 0 or 1 which multiply the

timestep at each point. Thus where ib = 0 there is no

change to the flow variables. These points are said to
be "blanked out." The value of ib is set to zero within

holes and also at hole and outer boundaries where in-

terpolations from other grids will be used to update

the solution. At interior points, ib = 1.

In this implementation then, at any grid point
where ib = 1, data on either side is valid, i.e., is ei-

ther an interior point or a boundary point. Thus any

three-point differencing stencil will return valid infor-
mation. For five-point stencils however, further modi-

fication of the flow solver is required. This is true for

the second-order accurate flux vector split Euler terms

and the fourth-order smoothing. By using the value of

ib at neighboring points when forming the differences,

accuracy is reduced to first order for the flux split Eu-
let terms, and the fourth-order smoothing reverts to

second-order smoothing [11. This occurs in a manner
similar to what happens when approaching the edge

of the computational grid.
Boundary conditions for the F3D routine are im-

plemented as calls to modular routines, including vis-

cous wall, axis, symmetry plane, and extrapolated out-

flow conditions. These conditions are applied explic-

itly, both before and after each iteration on a grid.

Chimera interpolations for hole and outer boundaries

are also updated as explicit boundary conditions, and

are performed before the standard boundary condi-

tions are applied.

During the solution process, the F3D code cy-

cles through the grids, reading in flow and grid data
from the previous iteration and Chimera interpolation

pointers for the current grid. At this point, an iter-

ation or iterations may be taken independent of the

other grids. Updated flow information is written out

and the next grid is processed.

3. Chimera for Intersecting Components

To provide an illustration of the Chimera over-

set grid scheme as well as an example of the collar grid
method, we shall consider the case of a cylinder inter-

secting a curved surface. This geometry is presented

in Fig. 3, which shows parts of the grids for each com-

ponent. In Fig. 4, grid points which lie inside the other
component are blanked out, leaving holes in the cylin-

der and surface in the region of the intersection. Fig. 5

shows resulting hole boundaries for the curved surface

grid (5a) and cylinder grid (5b). These are the points
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which receive interpolated flow information from the

other grid.

Before delving into the method for filling in the

intersection region, we note that this outlines the ba-

sic Chimera grid joining strategy. For the results pre-

sented in this paper, the process of cutting holes and

finding interpolation stencils was performed by the

PEGASUS code (version 3.01) from Arvin/Calspan at

the Air Force Arnold Engineering Development Center

(AEDC) [10]. Several other methods for joining over-

lapped grids have also been developed (see for example

Refs. 14-15).

In order to present the details of the collar grid

approach, we now consider a two-dimensional example

of a circle and a plane (Fig. 6). Fig. 7 shows the holes

cut in both grids. The basic concept of the collar grid

is illustrated in Fig. 8 as a grid whose boundary ex-
tends from the intersection point onto each component

(circle and plane), and which covers the area between

the component grids in the region of the intersection.

(In this case the surface of the collar grid has been
made to conform to the discrete representation of the

circle.) In Fig. 9, the outer boundary surface of the

collar grid is shown to lie on the discrete definition of

the circle. While a wall boundary condition will be ap-

plied to the surface point, outer boundary points above

must be interpolated from the underlying circle grid.

These points are seen here to lie within appropriate
cells of the circle grid.

Proper outer boundary communication for the

collar grid has thus been established by forcing the
last surface point of the collar grid to lie on the sur-

face of the circle, as represented by the surface of the

circle grid. The other inter-grid communication that
must be established is at the hole boundaries of the

component grids in the neighborhood of the intersec-

tion. In Fig. 10 we can see that the surface of the

circle grid at the hole boundary does not lie exactly

on the discrete collar grid representation of the cir-

cle. While this offset is generally small, it must be

compared to the extremely fine grid spacing normal to
the surface necessary to compute high Reynolds num-

ber flows. Spacing in the normal direction can easily
be l0 s times smaller than in the other directions. A

closeup of the hole boundary of the circle grid is shown

in Fig. 11, illustrating that an interpolation stencil for

the first point off the surface would come from several

grid cells away from the surface in the collar grid. This

transfer of information would not accurately represent

the flow profile at this point. To correct this, the sur-

face point at the hole boundary is moved onto the sur-

face of the collar grid, and points above are moved a

similar amount. (Alternatively, the surface point can

be moved and the full grid regenerated.) With this
correction, hole boundary points in the circle grid will

receive realistic interpolations of the flow data from

the collar grid.

This procedure works as long as the outer bound-

ary of the collar grid is at least two points away from

the hole boundary in the circle grid, such that mo-

tion of the hole boundary point does not affect the

position of the surface at the collar outer boundary.

The fact that the component grid must be changed

is undesirable; a scheme where creation of the collar

had no effect on the other grids would be much prefer-

able. However, this approach does have the benefit of

not changing the current implementation of the flow

solver or the PEGASUS grid joining code.

We note here that some form of tricubic interpo-

lation could be used, allowing a more accurate repre-

sentation of the surface. In this case, the movement

of the hole boundary points would be greatly reduced

(but would still be necessary). This would also im-

prove the interpolation quality for the flow informa-

tion, but would incur the overhead of using a 64-point

stencil (in 3D), rather than an 8-point stencil in the
flow solver.

4. Collar Grid Generation

To demonstrate the process of generating the col-

lar grid, we return to the three-dimensional example

of the cylinder and curved surface (a simplified model
of the Shuttle External Tank and liquid hydrogen feed

line). Before generating a three-dimensional grid, a

surface grid must be defined, and before that, the in-

tersection line. The intersection of the components

can be determined by a variety of methods. This is a

typical function of a CAD system, but may also be de-

termined from the surface grids of the components. In

this case, intersection points along grid lines running

the length of the cylinder grid are determined, and
form the description of the intersection line. These

points may be splined and a new set of points gener-
ated if further refinement of the intersection is desired.

For generating the surface grid for the collar, and
for other surface grid generation tasks, a hyperbolic

surface grid generation program has been created [16-

17]. This program generates a single plane (z, y, z)

grid by marching out from the initial intersection line

onto one of the component surfaces. One of the usual

hyperbolic grid generation orthogonality conditions is

replaced by a condition of orthogonatity to the local
surface normal of the component surface grid. After

each step, the new row of points is explicitly projected

onto the component surface grid to insure adherence to

the surface. (The surface itself is currently defined by
bilinear interpolation of the component surface grid.)

The grid is marched out far enough to cover the hole

in the curved surface grid and provide adequate over-

lap for interpolation. Fig. 12 shows the resulting sur-
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face grid on the curved surface. This may be repeated
for the cylinder, or a simple stretching of points from

the intersection point along cylinder grid lines may be

used. When the two grid sections are joined, the result

is a surface grid covering the intersection region and

adhering to each component surface (Fig. 13).

Once a surface grid has been created, a 3D collar

grid is generated using a hyperbolic grid generator [12],

where initial wall spacing is specified and the grid is

created by marching out until the outer boundary is
a sufficient distance from the surface. Slices of the 3D

collar grid are shown in Fig. 14.

5. Validation and Results

A wing/body combination was selected to exer-

cise the collar grid approach and validate the method.

The particular geometry and experimental data used

for comparison are described in Ref. 18, and were cho-

sen because of the presence of measurements in the

wing/body junction region. Flow conditions for the

experiment were Mach 0.8 and 2° angle-of-attack. The

Reynolds number was one million based on the ge-
ometric mean chord, tripped at 12.5% chord on the

wing and fully turbulent on the body.

The overall geometry is illustrated in Fig. 15, and
consists of a simple axisymmetric body with a swept,

tapered wing based on an uncambered RAE 101 air-

foil. The wing has no dihedral or twist. The same
flow conditions as the experiment were used for the

computation. The surface grid for the collar, shown

in Fig. 16, uses a C-grid topology on the wing, and

fans out onto the fuselage. The 3D collar grid is thus

"grown" out from this surface using the hyperbolic

grid generator. Hole boundaries in the wing and body

grids are shown in Fig. 17.

Comparisons of surface pressure coefficients in
the neighborhood of the wing/body junction are pre-

sented in Fig. 18 for wing section cuts, and in Fig. 19

for fuselage axial cuts. Excellent agreement has been

obtained for all areas of the geometry, except near the

leading edge of the wing where the turbulence model

was turned on abruptly. Modeling of a finite length

transition region would be more physically correct, and

would reduce the sudden pressure change at this point.

Following transition, the computed solution rapidly re-
covers to again match the experimental data. (The
turbulence model was turned on at 8.5% chord, rather

than 12.5% where the boundary layer trip was located

on the model.)

While work on applying the collar grid scheme to

the Shuttle attach hardware is in progress, the method
has been used to include the Orbiter vertical tail in the

full launch vehicle calculations. Earlier computations

had neglected the vertical tail, both because of the

difficulty in gridding the geometry and the feeling that

at zero sideslip the tail would have minimal effect on

Orbiter wing and fuselage surface pressures.

The extent of the collar grid on the Orbiter sur-

face is shown in Fig. 20. At the end of the fuselage,

the surface grid folds down onto the aft bulkhead (not

shown). One of several computations has been made

at a Much number of 1.1 and angle-of-attack of -3.90

(set to correspond to a flight test data point for wing

pressure comparisons). Surface pressure contours are

plotted in the region of the vertical tail in Fig. 21. A

smooth transition is made between the fuselage and

collar grids; a small jog is evident over part of the

boundary between the collar and tail grids. This is

believed to be due to the somewhat coarser tail grid

being allowed to come too close to the fuselage inter-
section. If this is the case, the remedy would be to

increase the size of the hole in the vertical tail grid,

and extend the collar grid farther up the tail to main-

tain the desired grid overlap.

Limited pressure data is available for the vertical

tail from the first four Shuttle flights [19!. Wind tunnel

data is also available [20], and both are compared with

the computed solution in Fig. 22, at a span station of

Z/S = 0.309. The computation was made at the wind

tunnel Reynolds number of 4 x 10e per foot, based
on the 3% scale model. Wind tunnel data shown is

from -4 o angle-of-attack. Comparison between com-

putation and wind tunnel is quite good for the forward

portion of the chord. Differences past that point may

be attributed to lack of modeling in the computation

of the main engine bells and Orbital Maneuvering Sys-

tem (OMS) pod extensions past the aft bulkhead. The

flight data includes the effect of main engine and Solid
Rocket Booster plumes.

Finally, the effect of the tail on fuselage and wing

surface pressures can be seen in Fig. 23. Additional

blockage from the tail causes a significant increase in

the high pressure region ahead of the OMS pods, and

a slight change in inboard wing pressures.

6. Summary

A method has been developed to overcome prob-

lems with using the Chimera overset grid scheme in

the region of intersecting geometry components. This

is accomplished by introducing a "collar grid" which

resolves the intersection region and provides commu-
nication between the component grids.

Several examples have been presented which il-

lustrate the method. Excellent comparison of com-

puted and experimental data for flow about a wing/body

configuration serves as a validationofthe approach. Fi-

nally, application of the collar grid scheme to the Or-
biter fuselage and vertical tail intersection in a compu-

tation of the full Space Shuttle launch vehicle demon-
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strates its usefulness for simulation of flow about com-

plex aerospace vehicles.
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Figure 1. Overlapped grids for the Shuttle launch vehicle configuration.
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(a) flight hardware (b) computational model

Figure 2. Orbiter/ET aft attach hardware.

Figure 3. Cylinder and curved surface geometry and

grids.

Figure 4. Grids after cutting holes.
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Figure 5(a). Boundary of hole cut in curved surface

grid.

Figure 5(b). Hole boundary for cylinder grid.
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Figure 6. 2D circle and plane grids. Figure 7. Grids with holes cut.
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Figure 8. Collar grid filling in intersection region.
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Figure 9. Filled symbols mark outer boundary points

of (solid) collar grid which require interpolated flow
data from (dashed) circle grid.
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Figure 10. Hole boundary points of (solid) circle grid

which require interpolated information from (dashed)

collar grid.

Figure 12. Hyperbolic surface grid generated from the
intersection line onto the curved surface.

Figure 13. Combined collar surface grid. Figure 14. Slices of the completed collar grid.
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Figure 15. Wing/body geometry.
Figure 16. Collar surface grid for wing/body intersec-

tion.

Figure 17(a). Boundary of hole cut in wing grid.
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Figure 18. Comparison of surface pressure coefficient on wing section cuts, O experimental results (Ref. 18),

-- present computed results. Turbulence model was turned on abruptly at 8.5_, chord.
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Figure 20. Collar surface grid for the Orbiter vertical
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Figure 22. Comparison of pressure coefficient on the

vertical tail for a chordwise cut at Z/S = 0.309;
-- present computation, C) wind tunnel data (Ref. 20),

and flight data minimum (+) and maximum (×)
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Figure 21. Pressure contours in the Orbiter vertical

tail region.

Figure 23. Top view of Orbiter fuselage and inboard

wing surface pressure contours, (left) with vertical tail
and (right) without.
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ABSTRACT

In this paper, several issues relating to the application of Chimera overlapped grids to complex geometries and

flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding

for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for

transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures
axe shown.

INTRODUCTION

f

During the past four years, simulations of flow about the Space Shuttle launch vehicle have been made using

the Chimera overlapped grid scheme [I-4]. Adoption of the Chimera scheme [5-7} allowed discretization of the volume

about the complex Shuttle vehicle as a collection of structured grids. The overlapped grid approach was chosen over

a patched scheme to reduce the labor time involved in domain decomposition. These simulations have used an

implicit, approximately factored finite difference procedure to model the three-dimensional thin-layer Navier-Stokes
equations.

The initial geometry simulated included the three major components: the Orbiter, External Tank (ET),

and Solid Rocket Boosters (SRBs). Attach hardware between the components, fuel feed lines, and even the Orbiter

vertical tail were ignored in the interest of keeping the problem tractable and learning the problems and pitfalls of the

Chimera scheme. Simplified forward and aft attach hardware between the Orbiter and ET, and the vertical tail were

then added using overlapped grids for each component. Also, SRB and Orbiter stings were Filled in with additional

grids. Elevon deflections and the SRB attach ring were incorporated by modifying the existing Orbiter and SRB

grids. Current grid systems contain about 1.6 million points in 14 grids (Figs. 1-2). Sample wing pressures are shown

in Fig. 3, comparing computed results with wind tunnel [8] and flight data [9] for Much 1.25, -5.1' angle-of-attack.

These CFD computations provide reasonable wing pressures (average differences with wind tunnel _ are less

than 0.1), and total integrated vehicle forces are close to flight-derived values. However, computed wing loads are
significantly different from flight, and in the high dynamic pressure portion of the ascent, minimizing Orbiter wing

loads is critical for Shuttle performance. Continuing efforts to reduce differences between flight-measured pressures

and computations is forcing a reexamination of CFD procedures and assumptions. In addition, development of this

capability into an engineering predictive tool is leading to a list of desired improvements. Some of these dif_culties

and improvements are discussed below.

GRID GENERATION AND JOINING

The overall philosophy behind the use of overlapped grids is that individual component grids can be generated
easily if one does not have to match to other grids or pieces of geometry. The process of cutting holes in grids to

allow for other components, and finding interpolation stencils to pass flow information between the grids is handled

after the grids have been generated. This effectively joins the grids and provides communication between them.

Component grid generation can be accomplished using hyperbolic grid generation [10], which is much faster than

using an elliptic grid generator. The PEGASUS code from AEDC [11] has been used for the grid joining operation on

many of the Shuttle applications, and a modified scheme which is significantly faster is also under development [12_.

While this description makes application of the Chimera scheme sound quite simple, several considerations

in the grid-joining process make the generation of an adequate grid system considerably more complex.

Mixed Grid Topologies

Overlapped grids are particularly useful for geometries which combine different topologies. One example is

flow over a plate with an obstruction above it, shown in Fig. 4. The plate is particularly suited to a cartesian mesh,





while the obstruction is best fit with a cylindrical grid. This type of situation occurs in a number of places on the
Shuttle, mostly where pieces of attach hardware approach the Orbiter or External Tank.

In this example, the plate represents the bottom surface of the Orbiter and the obstruction is the crossbeam

of the aft attach. As illustrated, downstream spacing for the Orbiter grid, generally picked to resolve geometric

features on the Orbiter, is quite large compared to the crossbeam. Again, the philosophy of generating each grid

independently does not encourage consideration of other components when choosing grid spacing. An attempt to

join these two grids results in a number of regions where there is no overlap between the grids (Fig. 5). Points
flagged in the figure indicate "orphans," boundary points for which no interpolation stencil could be found. This

example violates the _general rule-of-thumb" which accompanies PEGASUS, which is that grids should be of similar

resolution at interface regions. This is easier said than done. When cartesian and cylindrical grids are merged, this

discrepancy manifests itself in the regions fore and aR of the obstruction, between the bodies. _ Stalrsteps" in the

hole cut in the cylindrical grid become too large to cover the hole in the cartesian grid. Basically, finer grids are
called for.

In Shuttle work to date, significant investments have gone into generating grids for the major components,

so that changing the grid resolution is not a trivial activity. Minimum increases to the downstream spacing in the

major grids have been made, but the addition of attach hardware grids has still been a delicate operation. In order to

ensure adequate resolution in the Orbiter grid, local downstream spacing on the order of the size of the gap between
the Orbiter and crossbeam is suggested. A patched refined grid is an economical way to achieve the required tenfold
increase in resolution. Figure 6 shows such a grid system with a sample solution at Mach 1.25.

Intersecting Geometric Components

If one accepts the rule-of-thumb that grids are of similar resolution where they are joined, and further that

each grid adequately resolves flow gradients found in that grid, then interpolation is a reasonable way of passing

boundary information. The PEGASUS code uses trilinear interpolation, the accuracy of which is generally not a
problem. In cases where separately gridded geometric components intersect, however, resolution of the intersection

region and generation of corresponding interpolation stencils is not a straightforward task. In order to avoid this

situation,approximations to the Shuttle geometry have been made. Figure 7 shows how Orbiter/ET attach hardware

has been modeled to _float" between the two bodies, without actually connecting to either. The concept of a collar

grid has been introduced in Ref. 13, which allows the accurate representation of the surface geometry in light of the

trilinear interpolation used at the grid boundaries. In Fig. 8, a simplified model of the Shuttle liquid hydrogen (LH2)
feediine and the External Tank is shown, with a collar grid fitted to the intersection line. While this model of the

feedline has not been incorporated into the full configuration yet, the Orbiter vertical tail has been included in this

manner. The tail collar grid and corresponding surface pressures are shown in Fig. 9.

FLOW SOLVER

Algorithm Change

Improvements to both accuracy and speed of the flow solver affect the use of this simulation capability as an

engineering tool on Shuttle-related problems. Acceleration of the code has allowed the timely completion of studies

on the effect of SRB geometry modifications. In the Shuttle flow simulations carried out previously [1-4], the F3D

thin-layer Navier-Stokes code was used. This code incorporated flux-vector splitting in one coordinate direction and
central differencing in the other two. This allowed use of a two-factor implicit factorization of the left-hand side.

However, significant computation was required to compute the flux-split terms for both the right- and left-hand sides.

Currently, computations of steady ascent flowfields are being generated using the Pulliam-Chaussee diagc-
nalized algorithm as implemented in ARC3D [14-15]. Similar convergence behavior has been observed for cases run

so far, while realizing a factor of three improvement in time per grid point per iteration over the F3D code. (In

addition, a recoding of the F3D algorithm has resulted in a 35% reduction in its execution time.)

Turbulence Modeling

Another problem arises when solving for the turbulent flowfield over a multi-body configuration using several

grids, such as used for the Shuttle launch configuration. Implementation of the Baldwin-Lomax algebr-,ic turbulence

model [16] requires searching out from the body surface for a length scale used in computing the turbulent eddy

viscosity. If a grid boundary is encountered before the appropriate length is found, an erroneous eddy viscosity will

be computed. Indeed, for overlapped grids, the turbulence model must know the locations of holes cut for other





grids,and should not search too close to another body where boundary layer vorticity might lead to a false peak

in the function F(y) _ _,J. A sample profile of F(y) between the Orbiter and ET is shown in Fig. I0, where each

grid finds the location of F,_4, at an inappropriate location, close to the other body. Some method of computing
reasonable levels of m must be employed in order to resolve Reynolds number dependence of the flow. One such

candidate follows the work of Degani and Schift" [171 by defining a cutoff level in the search for F,_,, i.e., finalizing

the choice of F,,,_= when F(y) drops below some fraction of the current maximum F(y) found in the profile. This
provides satisfactory results for the present example, but does not handle separation and turbulent wakes. One-

and two-equation turbulence models are also being pursued to improve solution quality for such complex multi-body
flowflelds.

CONCLUSIONS

The Chimera overlapped grid approach to domain decomposition has allowed gridding and computation

of flow about the Space Shuttle launch vehicle, without the time required for setting up a block-structured grid

system. With improvements to the modeled geometry, accuracy of the computed surface pressures has become quite

good from a CFD standpoint. However, accuracy required for wing loading analyses is significantly higher, and

effective use of Chimera for geometry changes has proven difficult. Grid joining problems are being overcome by
development of the collar grid technique, and by simply increasing grid resolution to a level commensurate with the

size of local geometry features. Turbulence modeling can have a significant impact on pressure loads for a mniti-

body configuration. Difficulties with the Baldwin-Lomax model when using overlapped grids can greatly affect the

calculation of turbulent eddy viscosity, and therefore the accuracy of pressure loads. Finally, switching from the F3D

code to one based on the diagonalized ARC3D scheme has resulted in a three-fold speedup in solution time, at no
penalty in convergence or accuracy.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Prof. Joseph Stager of the University of California, Davis, and formerly

of NASA Ames for his counseling and guidance of the Shuttle simulation effort over the years. Financial support

for this work was provided by the National Space Transportation System Program Office and NASA Johnson Space

Center. Computational support was provided by the NASA Ames Numerical Aerodynamic Simulation Facility and

the NASA Johnson Engineering Computational Facility.

REFERENCES

1. P.G. Buning, I.T. Chiu, S. Obayashi, Y.M. Rizk, and 3.L. Steger, AIAA-88-4359-CP (Aug. 1988).

2. P.G. Buning, I.T. Chiu, F.W. Martin Jr., R.L. Meakin, S. Obayashi, Y.M. Pdzk, 3.L. Steger, and M. Yarrow,

"Flowfield Simulation of the Space Shuttle Vehicle in Ascent, _ Proceedings of the Fourth International

Conference on Supercomputing, Apr. 30-May 5, 1989, Santa Clara, California.

3. R.L. Meakin and N.E. Suhs, AIAA-89-1996 (June 1989).

4. R.L. Meakin, "Transient Flow Field Responses About the Space Shuttle Vehicle During Ascent and SRB

Separation," Store Carriage, Integration and Release Conference, Royal Aeronautical Society, Apr. 4-6, 1990,
Bath, UNITED KINGDOM.

5. 3.L. Stager, F.C. Dougherty, and 3.k. Benek, Advances in Grid Generation, K.N. Ghia and U. Ghia, ASME
FED-S, 59 (1983).

6. J.A. Benek, P.G. Buuing, and 3.L. Stager, AIAA-85-1523-CP (July 1985).

7. 3.A. Benek, T.L. Donegan, and N.E. Subs, AIAA-87-1126-CP (June 1987).

8. R.H. Spangler , NASA CR 160851 (Oct. 1981).

9. R.A. Machin, private communication, NASA Johnsons Space Center, Houston, Texas.
10. W.M. Chan and 3.L. Steger, AIAA-91-1588-CP (June 1991).

11. 3.A. Benek, J.L. Stager, F.C. Dougherty, and P.G. Buning, AEDC-TR-85-64, Arnold Engineering Develop-
ment Center, Arnold AFS, Tennessee (Apr. 1986).

12. R.L. Meakin, AIAA-91-1586-CP (June 1991).

13. S.J. Parks, P.G. Buning, J.L. Stager, and W.M. Chan, AIAA-91-1587-CP (June 1991).
14. T.H. Pulliam and D.S. Chaussee, 3 C P 39, 347 (1981).

15. T.H. Pulliam, "Efficient Solution Methods for the Navier-Stokes Equations, _ yon Karman Institute for Fluid

Dynamics Lecture Series: Numerical Techniques for Viscous Flow Computation in Turbomachinery Bladings,
Jan. 20-24, 1986, Brussels, BELGIUM.

16. B.S. Baldwin and H. Lomax, AIAA-78-257 (Jan. 1978).

17. D. Degani and L.B. Schifl', AIAA-83-0034 (Jan. 1983).





Figure 1. Computational model of the Space Shuttle launch vehicle geometry.

Figure 2. Symmetry plane of the overlapped grid system.
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Figure 3. Orbiter wing pressure coef_cient at span location y = 250 inches (directly above SRB centerline).
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Figure 5. Orphan points left when joining overlapped
grids.
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Figure 6. Local grid refinement to overcome grid joining problems.
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Figure 7. Orbiter/ET aft attach hardware.
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Figure 10. Profile of F(y) vs. z between the Orbiter

(top) and ET, from Orbiter grid (- -), and from ET

grid (--).




